PUBLICATIONS

38. Design, synthesis and catalytic activity of protein containing thiotyrosine as an active site residue
T. Bachelart, S. Kumar, A. Jouin, M. Yousef, B. Kieffer, V. Torbeev*
ChemBioChem 2024, e202400148

37. Amyloid engineering – how terminal capping modifies morphology and secondary structure of supramolecular peptide aggregates
M. Grelich-Mucha, T. Bachelart, V. Torbeev, K. Ożga, Ł. Berlicki, and J. Olesiak-Bańska*
Biomaterials Science, 2024, 12, 1590-1602

36. Des protéines de synthèse taillées sur mesure pour investiguer le vivant
V. Aucagne, F. Burlina, O. Melnyk, V. Torbeev
L’actualité chimique 2021, 468, 26-28

35. Fluorine NMR study of proline-rich sequences using fluoroprolines (open access)
D. Sinnaeve*, A. Ben Bouzayene, E. Ottoy, G.-J. Hofman, E. Erdmann, B. Linclau, I. Kuprov, J. C. Martins, V. Torbeev, and B. Kieffer*
Magn. Reson. 2021, 2, 795-813

34. Autofluorescence of amyloids determined by enantiomeric composition of peptides (open access)
M. Grelich-Mucha, A. M. Garcia, V. Torbeev, K. Ozga, L. Berlicki, and J. Olesiak-Bańska*
J. Phys. Chem. B 2021, 125, 5502-5510

33. Acyl transfer catalytic activity in de novo designed protein with N-terminus of α-helix as oxyanion-binding site
E. A. Naudin, A. G. McEwen, S. K. Tan, P. Poussin-Courmontagne, J.-L. Schmitt, C. Birck, W. F. DeGrado*, and V. Torbeev*
J. Am. Chem. Soc. 2021, 143, 3330-3339
green open access
-highlighted by University of Strasbourg
-highlighted by CNRS

Research supported by ERC Starting grant HiChemSynPro (no. 715062)

32. Conformational editing of intrinsically disordered protein by α-methylation (open access)
V. Bauer, B. Schmidtgall, G. Gógl, J. Dolenc, J. Osz, Y. Nominé, C. Kostmann,
​A. Cousido-Siah, A. Mitschler, N. Rochel, G. Travé, B. Kieffer, V. Torbeev*
Chemical Science 2021, 12, 1080-1089
-highlighted by CNRS

Previously preprint “Enhancing binding affinity of an intrinsically disordered protein by
α-methylation of key amino acid residues

ChemRxiv ​  https://doi.org/10.26434/chemrxiv.10113128.v1

Research supported by ERC Starting grant HiChemSynPro (no. 715062)

31. Deciphering protein folding using chemical protein synthesis
V. Torbeev, Chapter in “Total chemical synthesis of proteins” (Eds. A. Brik,
​P. Dawson, L. Liu). Wiley-VCH, 2021 (ISBN: 978-3-527-34660-8).
green open access

30. Aggregation and amyloidogenicity of nuclear coactivator binding domain of CREB-binding protein
A. M. Garcia, C. Giorgiutti, Y. El Khoury, V. Bauer, C. Spiegelhalter, E. Leize-Wagner, P. Hellwig, N. Potier, V. Torbeev*
Chem. Eur. J. 2020, 26, 9889-9899 (Very important paper – Frontispiece cover)
– highlighted on ChemistryViews
– highlighted by University of Strasbourg
green open access

Research supported by ERC Starting grant HiChemSynPro (no. 715062)

29. Chemical synthesis of an enzyme containing an artificial catalytic apparatus
V. Torbeev, S. B. H. Kent, Australian J. Chem. 2020, 73, 321-326

28. Illuminating voltage sensor paddling in different membrane milieu
V. Torbeev, New and Notable in Biophys. J. 2020, 118, 781-782

27. Modification of enzyme activity by vibrational strong coupling of water
R. M. A. Vergauwe, A. Thomas, K. Nagarajan, A. Shalabney, J. George, T. Chervy, M. Seidel, E. Devaux, V. Torbeev*, T. W. Ebbesen*
Angew. Chem. Int. Ed. 2019, 58, 15324-15328

26. Chemical synthesis of transactivation domain (TAD) of tumor suppressor protein p53 by native chemical ligation of three peptide segments
A. Baral, A. Asokan, V. Bauer, B. Kieffer, V. Torbeev*
Tetrahedron 2019, 75, 703-708
green open access

Research supported by ERC Starting grant HiChemSynPro (no. 715062)

25. Total chemical synthesis and biophysical properties of a designed soluble 24 kDa amyloid analogue (open access)
R. Boehringer,  B. Kieffer, V. Torbeev*
Chemical Science 20189, 5594-5599

Selected to be part of the 2018 Chemical Science HOT Article Collection

Research supported by ERC Starting grant HiChemSynPro (no. 715062)

24. Dissecting mechanism of coupled folding and binding of an intrinsically disordered protein by chemical synthesis of conformationally constrained analogues
B. Schmidtgall, O. Chaloin, V. Bauer, M. Sumyk, C. Birck, V. Torbeev*
Chem. Commun. 201753, 7369-7372

23. Covalent tethering and residues with bulky hydrophobic side chains enable to direct self‐assembly of distinct amyloid structures
J. Ruiz, R. Boehringer, M. Grogg, J. Raya, A. Schirer, C. Crucifix, P. Hellwig, P. Schultz,
​V. Torbeev*
ChemBioChem 2016, 17, 2274-2285

22. Quantum strong coupling with protein vibrational modes
R. M. Vergauwe, J. George, T. Chervy, J. A. Hutchison, A. Shalabney,
​V. Torbeev*, T. W. Ebbesen*
J. Phys. Chem. Lett. 2016, 7, 4159-4164

21. Chiral recognition in amyloid fiber growth
V. Torbeev*, M. Grogg, J. Ruiz, R. Boehringer, A. Schirer, P. Hellwig,
​G. Jeschke, D. Hilvert
J. Pept. Sci. 2016, 22, 290-304

Publications of Dr. Vladimir Torbeev prior joining the University of Strasbourg:

20.  V. Torbeev, M.-O. Ebert, J. Dolenc, D.Hilvert. Substitution of proline32 by α-methylproline preorganizes β2-microglobulin for oligomerization but not for aggregation into amyloids. J. Am. Chem. Soc. 2015137, 2524-2535
19.  M. P. Friedmann, V. Torbeev, V. Zelenay, A. Sobol, J. Greenwald, R. Riek. Towards prebiotic catalytic amyloids using high throughput screening.  PLoS One 2015, 10, e0143948
18.  V.Y. Torbeev, D. Hilvert.  Both the cis-trans equilibrium and isomerization dynamics of a single proline amide modulate β2-microglobulin amyloid assembly.  Proc. Natl. Acad. Sci. USA 2013, 110, 20051-20056
17.  V.Y. Torbeev, E. Fumi, M.-O. Ebert, W.B. Schweizer, D. Hilvert.  Cis-trans peptide bond isomerization in α-methylproline derivatives.  Helv. Chim. Acta 2012, 95, 2411-2420
16.  V.Y. Torbeev, S.B.H. Kent. Ionization state of the catalytic dyad Asp25/25’ in the HIV-1 protease: NMR studies of site-specifically 13C labeled HIV-1 protease prepared by total chemical synthesis.  Org. Biomol. Chem. 201210, 5887-5891
15.  K. Mandal, B. L. Pentelute, D. Bang, Z. P.Gates, V.Y. Torbeev, S.B.H. Kent. Design, total chemical synthesis, and X-ray structure of a protein having a novel polypeptide chain topology.  Angew. Chem. Int. Ed. 2012, 51, 1481-1486
14.  V.Y. Torbeev, H. Raghuraman, D. Hamelberg, M. Tonelli, W.M. Westler, E. Perozo, S.B.H. Kent.  Protein conformational dynamics in the mechanism of HIV-1 protease catalysis.
Proc. Natl. Acad. Sci. USA 2011108, 20982-20987
13.  V.Y. Torbeev, S.Myong, T.Ha, S.B.H. Kent.  Single molecule studies of HIV-1 protease catalysis enabled by chemical protein synthesis. Isr. J. Chem. 2011, 51, 960-967
12.  V.Y. Torbeev, H. Raghuraman, K. Mandal, S. Senapati, E. Perozo, S.B.H. Kent. Dynamics of “flap” structures in three HIV-1 protease/inhibitor complexes probed by total chemical synthesis and pulse-EPR spectroscopy.  J. Am. Chem. Soc. 2009131, 884-885
11.  V.Y. Torbeev, K. Mandal, V.A. Terechko, S.B.H. Kent.  Crystal structure of chemically synthesized HIV-1 protease and a ketomethylene isostere inhibitor based on the p2/NC cleavage site. Bioorg. Med. Chem. Lett. 2008, 18, 6012-6015
10.  V.Y. Torbeev, S.B.H. Kent.  Convergent chemical synthesis and crystal structure of a 203 amino acid ‘covalent dimer’ HIV-1 protease enzyme molecule. Angew. Chem. Int. Ed. 200746, 1667-1670
9.  T. Durek, V.Y. Torbeev, S.B.H. Kent.  Convergent chemical synthesis and high resolution X-ray structure of human lysozyme. Proc. Natl. Acad. Sci. USA 2007, 104, 4846-4851
8.  V.Y. Torbeev, E. Shavit, I. Weissbuch, L. Leiserowitz, M. Lahav.  Control of crystal polymorphism by tuning the structure of the “auxiliary” molecules as nucleation inhibitors. The β-polymorph of glycine grown in aqueous solutions.  Crystal Growth Des. 2005, 5, 2190-2196
7.  I. Weissbuch, V.Y. Torbeev, L. Leiserowitz, M. Lahav.  Solvent effect on crystal polymorphism. Why addition of methanol or ethanol to aqueous solutions induce the precipitation of the least stable β-form of glycine.  Angew. Chem. Int. Ed. 2005, 44, 3226-3229
6.  P.A. Levkin, V.Y. Torbeev, D.A. Lenev, R.G. Kostyanovsky.  Chapter “Homo- and Heterochirality in Crystal” in “Topics in Stereochemistry”, vol. 25, (eds. S. E. Denmark, J. S. Siegel), pp. 81-134, Wiley, 2006
5.  V.Y. Torbeev, K.A. Lyssenko, O.N. Kharybin, M.Y. Antipin, R.G. Kostyanovsky.  Lamellar racemic twinning as an obstacle for the resolution of enantiomers by crystallization: The case of Me(Ph)N+(All)CH2Ph X– (X= Br, I) salts.  J. Phys. Chem. B 2003, 107, 13523-13531
4.  R.G. Kostyanovsky, F.A. Lakhvich, P.M. Philipchenko, D.A. Lenev, V.Y. Torbeev, K.A. Lyssenko.  (±)-trans-1,2-diaminocyclohexane crystallizes as a conglomerate.  Mendeleev Commun. 2002, 4, 147-149
3.  R.G. Kostyanovsky, G.K. Kadorkina, K.A. Lyssenko, V.Y. Torbeev, A.N. Kravchenko, O.V. Lebedev, G.V. Grintselev-Knyasev, V.R. Kostyanovsky.  Chiral drugs via spontaneous resolution.  Mendeleev Commun. 2002, 1, 6-8
2.  R.G. Kostyanovsky, V.Y. Torbeev, K.A. Lyssenko.  Spontaneous resolution of chiral Co (III) complexes. Tetrahedron: Asymmetry 2001, 12, 2721-2726
1.  R.G. Kostyanovsky, V.R. Kostyanovsky, G.K. Kadorkina, V.Y. Torbeev.  Resolution of racemates with achiral reagents.  Mendeleev Commun. 2000, 3, 83-84